Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.706
Filtrar
1.
Drug Des Devel Ther ; 18: 781-799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500692

RESUMO

Purpose: This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting ß-arrestin2 (ß-arr2)-mediated SERCA2a SUMOylation. Materials and Methods: The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. ß-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. ß-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to ß-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results: The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted ß-arr2 expression, whereas Barbadin (ß-arr2 inhibitor) or ß-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with ß-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion: QFYXF improves HF by promoting ß-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.


Assuntos
Insuficiência Cardíaca , Sumoilação , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo
2.
Nutrients ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474873

RESUMO

Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.


Assuntos
Angiotensina II , Cálcio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/metabolismo , Cálcio/metabolismo , Taurina/farmacologia , Cardiomegalia/metabolismo , Miócitos Cardíacos , Endotélio/metabolismo
3.
Int J Biol Sci ; 20(5): 1815-1832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481817

RESUMO

Chronic pressure overload can cause pathological cardiac remodeling and eventually heart failure. The ubiquitin specific protease (USP) family proteins play a prominent role in regulating substrate protein degradation and cardiac structural and functional homeostasis. Although USP38 is expressed in the heart, uncertainty exists regarding the function of USP38 in pathological cardiac remodeling. We constructed and generated cardiac specific USP38 knockout mice and cardiac specific USP38 overexpression mice to assess the role of USP38 in pathological cardiac remodeling. Furthermore, we used co-immunoprecipitation (Co-IP) assays and western blot analysis to identify the molecular interaction events. Here, we reported that the expression of USP38 is significantly elevated under a hypertrophic condition in vivo and in vitro. USP38 deletion significantly mitigates cardiomyocyte enlargement in vitro and hypertrophic effect induced by pressure overload, while overexpression of USP38 markedly aggravates cardiac hypertrophy and remodeling. Mechanistically, USP38 interacts with TANK-binding kinase 1 (TBK1) and removes K48-linked polyubiquitination of TBK1, stabilizing p-TBK1 and promoting the activation of its downstream mediators. Overexpression of TBK1 in the heart of cardiac specific USP38 knockout mice partially counteracts the benefit of USP38 deletion on pathological cardiac remodeling. The TBK1 inhibitor Amlexanox significantly alleviates pressure overload induced-cardiac hypertrophy and myocardial fibrosis in mice with USP38 overexpression. Our results demonstrate that USP38 serves as a positive regulator of pathological cardiac remodeling and suggest that targeting the USP38-TBK1 axis is a promising treatment strategy for hypertrophic heart failure.


Assuntos
Insuficiência Cardíaca , Transdução de Sinais , Animais , Camundongos , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Remodelação Ventricular/genética
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473855

RESUMO

In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, ß-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca2+ transport without any changes in myofibrillar Ca2+-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure. On the other hand, the right ventricle showed maladaptive cardiac hypertrophy at the severe stages of heart failure due to myocardial infarction. The upregulation and downregulation of ß-adrenoreceptor-mediated signal transduction pathways were observed in the right ventricle at moderate and late stages of heart failure, respectively. The catalytic activity of adenylate cyclase, as well as the regulation of this enzyme by Gs proteins, were seen to be augmented in the hypertrophied right ventricle at early, moderate and severe stages of heart failure. Furthermore, catecholamine stores and catecholamine uptake in the right ventricle were also affected as a consequence of changes in the sympathetic nervous system at different stages of heart failure. It is suggested that the hypertrophied right ventricle may serve as a compensatory mechanism to the left ventricle during the development of early and moderate stages of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ventrículos do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Catecolaminas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473911

RESUMO

Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure, thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids, leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the dynamics of membrane potential and are associated with heart failure development and progression. We will also provide an overview of the potential implication of mitochondria as an attractive therapeutic target in the management and recovery process in heart failure.


Assuntos
Insuficiência Cardíaca , Doenças Mitocondriais , Humanos , Mitocôndrias Cardíacas/metabolismo , Insuficiência Cardíaca/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Doenças Mitocondriais/metabolismo
6.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456539

RESUMO

Cardiac hypertrophy is one of the key processes in the development of heart failure. Notably, small GTPases and GTPase­activating proteins (GAPs) serve essential roles in cardiac hypertrophy. RhoGAP interacting with CIP4 homologs protein 1 (RICH1) is a RhoGAP that can regulate Cdc42/Rac1 and F­actin dynamics. RICH1 is involved in cell proliferation and adhesion; however, to the best of our knowledge, its role in cardiac hypertrophy remains unknown. In the present study, the role of RICH1 in cardiomyocyte hypertrophy was assessed. Cell viability was analyzed using the Cell Counting Kit­8 assay and cells surface area (CSA) was determined by cell fluorescence staining. Reverse transcription­quantitative PCR and western blotting were used to assess the mRNA expression levels of hypertrophic marker genes, such as Nppa, Nppb and Myh7, and the protein expression levels of RICH1, respectively. RICH1 was shown to be downregulated in isoproterenol (ISO)­ or angiotensin II (Ang II)­treated H9c2 cells. Notably, overexpression of RICH1 attenuated the upregulation of hypertrophy­related markers, such as Nppa, Nppb and Myh7, and the enlargement of CSA induced by ISO and Ang II. By contrast, the knockdown of RICH1 exacerbated these effects. These findings suggested that RICH1 may be a novel suppressor of ISO­ or Ang II­induced cardiomyocyte hypertrophy. The results of the present study will be beneficial to further studies assessing the role of RICH1 and its downstream molecules in inhibiting cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , Miócitos Cardíacos , Nitrobenzoatos , Procainamida/análogos & derivados , Humanos , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiopatias Congênitas/metabolismo
7.
Ann Clin Lab Sci ; 54(1): 17-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514055

RESUMO

OBJECTIVE: Diabetic cardiomyopathy (DCM) is the most common cardiovascular complication of type 2 diabetes mellitus (T2DM). Patients affected with DCM face a notably higher risk of progressing to congestive heart failure compared to other populations. Myocardial hypertrophy, a clearly confirmed pathological change in DCM, plays an important role in the development of DCM, with abnormal Ca2+ homeostasis serving as the key signal to induce myocardial hypertrophy. Therefore, investigating the mechanism of Ca2+ transport is of great significance for the prevention and treatment of myocardial hypertrophy in T2DM. METHODS: The rats included in the experiment were divided into wild type (WT) group and T2DM group. The T2DM rat model was established by feeding the rats with high-fat and high-sugar diets for three months combined with low dose of streptozotocin (100mg/kg). Afterwards, primary rat cardiomyocytes were isolated and cultured, and cardiomyocyte hypertrophy was induced through high-glucose treatment. Subsequently, mechanistic investigations were carried out through transfection with si-STIM1 and oe-STIM1. Western blot (WB) was used to detect the expression of the STIM1, Orai1 and p-CaMKII. qRT-PCR was used to detect mRNA levels of myocardial hypertrophy marker proteins. Cell surface area was detected using TRITC-Phalloidin staining, and intracellular Ca2+ concentration in cardiomyocytes was measured using Fluo-4 fluorescence staining. RESULTS: Through animal experiments, an upregulation of Orai1 and STIM1 was revealed in the rat model of myocardial hypertrophy induced by T2DM. Meanwhile, through cell experiments, it was found that in high glucose (HG)-induced hypertrophic cardiomyocytes, the expression of STIM1, Orai1, and p-CaMKII was upregulated, along with increased levels of store-operated Ca2+ entry (SOCE) and abnormal Ca2+ homeostasis. However, when STIM1 was downregulated in HG-induced cardiomyocytes, SOCE levels decreased and p-CaMKII was downregulated, resulting in an improvement in myocardial hypertrophy. To further elucidate the mechanism of action involving SOCE and CaMKII in T2DM-induced myocardial hypertrophy, high-glucose cardiomyocytes were respectively treated with BTP2 (SOCE blocker) and KN-93 (CaMKII inhibitor), and the results showed that STIM1 can mediate SOCE, thereby affecting the phosphorylation level of CaMKII and improving cardiomyocyte hypertrophy. CONCLUSION: STIM1/Orai1-mediated SOCE regulates p-CaMKII levels, thereby inducing myocardial hypertrophy in T2DM.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Cardiomegalia , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Glucose , Proteína ORAI1 , Molécula 1 de Interação Estromal , Animais , Ratos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glucose/metabolismo , Glucose/farmacologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima , Cardiomiopatias Diabéticas/complicações , Ratos Sprague-Dawley , Masculino
8.
Front Endocrinol (Lausanne) ; 15: 1339741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455657

RESUMO

Introduction: Thyroid hormones (THs) are known to have various effects on the cardiovascular system. However, the impact of TH levels on preexisting cardiac diseases is still unclear. Pressure overload due to arterial hypertension or aortic stenosis and aging are major risk factors for the development of structural and functional abnormalities and subsequent heart failure. Here, we assessed the sensitivity to altered TH levels in aged mice with maladaptive cardiac hypertrophy and cardiac dysfunction induced by transverse aortic constriction (TAC). Methods: Mice at the age of 12 months underwent TAC and received T4 or anti-thyroid medication in drinking water over the course of 4 weeks after induction of left ventricular pressure overload. Results: T4 excess or deprivation in older mice had no or only very little impact on cardiac function (fractional shortening), cardiac remodeling (cardiac wall thickness, heart weight, cardiomyocyte size, apoptosis, and interstitial fibrosis), and mortality. This is surprising because T4 excess or deprivation had significantly changed the outcome after TAC in young 8-week-old mice. Comparing the gene expression of deiodinases (Dio) 2 and 3 and TH receptor alpha (TRα) 1 and the dominant-negative acting isoform TRα2 between young and aged mice revealed that aged mice exhibited a higher expression of TRα2 and Dio3, while expression of Dio2 was reduced compared with young mice. These changes in Dio2 and 3 expressions might lead to reduced TH availability in the hearts of 12-month-old mice accompanied by reduced TRα action due to higher TRα2. Discussion: In summary, our study shows that low and high TH availability have little impact on cardiac function and remodeling in older mice with preexisting pressure-induced cardiac damage. This observation seems to be the result of an altered expression of deiodinases and TRα isoforms, thus suggesting that even though cardiovascular risk is increasing with age, the response to TH stress may be dampened in certain conditions.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Hormônios Tireóideos/metabolismo , Hipertensão/complicações
9.
Int J Biol Macromol ; 264(Pt 1): 130542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432272

RESUMO

Pathological cardiac hypertrophy (CH) is driven by maladaptive changes in myocardial cells in response to pressure overload or other stimuli. CH has been identified as a significant risk factor for the development of various cardiovascular diseases, ultimately resulting in heart failure. Melanoma differentiation-associated protein 5 (MDA5), encoded by interferon-induced with helicase C domain 1 (IFIH1), is a cytoplasmic sensor that primarily functions as a detector of double-stranded ribonucleic acid (dsRNA) viruses in innate immune responses; however, its role in CH pathogenesis remains unclear. Thus, the aim of this study was to examine the relationship between MDA5 and CH using cellular and animal models generated by stimulating neonatal rat cardiomyocytes with phenylephrine and by performing transverse aortic constriction on mice, respectively. MDA5 expression was upregulated in all models. MDA5 deficiency exacerbated myocardial pachynsis, fibrosis, and inflammation in vivo, whereas its overexpression hindered CH development in vitro. In terms of the underlying molecular mechanism, MDA5 inhibited CH development by promoting apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, thereby suppressing c-Jun N-terminal kinase/p38 signaling pathway activation. Rescue experiments using an ASK1 activation inhibitor confirmed that ASK1 phosphorylation was essential for MDA5-mediated cell death. Thus, MDA5 protects against CH and is a potential therapeutic target.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5 , Camundongos , Ratos , Animais , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Apoptose/fisiologia , Cardiomegalia/metabolismo , Transdução de Sinais , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
10.
Mol Metab ; 81: 101899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346589

RESUMO

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Ratos , Humanos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia
11.
Life Sci ; 341: 122482, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309577

RESUMO

AIMS: RBM10 is a well-known RNA binding protein that regulates alternative splicing in various disease states. We have shown a splicing-independent function of RBM10 that regulates heart failure. This study aims to unravel a new biological function of RBM10 phosphorylation by proto-oncogene cSrc that enables anti-hypertrophy gene program and controls cardiac hypertrophy. MATERIALS AND METHODS: We employ in vitro and in vivo approaches to characterise RBM10 phosphorylation at three-tyrosine residues (Y81, Y500, and Y971) by cSrc and target mRNA regulation. We also use isoproterenol induced rat heart and cellular hypertrophy model to determine role of cSrc-mediated RBM10 phosphorylation. KEY FINDINGS: We show that RBM10 phosphorylation is induced in cellular and animal heart model of cardiac hypertrophy and regulates target mRNA expression and 3'-end formation. Inhibition of cSrc kinase or mutation of the three-tyrosine phosphorylation sites to phenylalanine accentuates myocyte hypertrophy, and results in advancement and an early attainment of hypertrophy in the heart. RBM10 is down regulated in the hypertrophic myocyte and that its re-expression reverses cellular and molecular changes in the myocyte. However, in the absence of phosphorylation (cSrc inhibition or phospho-deficient mutation), restoration of endogenous RBM10 level in the hypertrophic heart or ectopic re-expression in vitro failed to reverse cardiomyocyte hypertrophy. Mechanistically, loss of RBM10 phosphorylation inhibits nuclear localisation and interaction with Star-PAP compromising anti-hypertrophy gene expression. SIGNIFICANCE: Our study establishes that cSrc-mediated RBM10 phosphorylation arbitrates anti-hypertrophy gene program. We also report a new functional regulation of RBM10 by phosphorylation that is poised to control heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Ratos , Animais , Fosforilação , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proto-Oncogenes , RNA Mensageiro/genética , Tirosina/metabolismo , Miócitos Cardíacos/metabolismo
12.
PLoS One ; 19(2): e0297121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349935

RESUMO

BACKGROUND: Heart failure (HF) is the last stage in the progression of various cardiovascular diseases. Although it is documented that CD151 contributes to regulate the myocardial infarction, the function of CD151 on HF and involved mechanisms are still unclear. METHOD AND RESULTS: In the present study, we found that the recombinant adeno-associated virus (rAAV)-mediated endothelial cell-specific knockdown of CD151-transfected mice improved transverse aortic constriction (TAC)-induced cardiac function, attenuated myocardial hypertrophy and fibrosis, and increased coronary perfusion, whereas overexpression of the CD151 protein aggravated cardiac dysfunction and showed the opposite effects. In vitro, the cardiomyocytes hypertrophy induced by PE were significantly improved, while the proliferation and migration of cardiac fibroblasts (CFs) were significantly reduced, when co-cultured with the CD151-silenced endothelial cells (ECs). To further explore the mechanisms, the exosomes from the CD151-silenced ECs were taken by cardiomyocyte (CMs) and CFs, verified the intercellular communication. And the protective effects of CD151-silenced ECs were inhibited when exosome inhibitor (GW4869) was added. Additionally, a quantitative proteomics method was used to identify potential proteins in CD151-silenced EC exosomes. We found that the suppression of CD151 could regulate the PPAR signaling pathway via exosomes. CONCLUSION: Our observations suggest that the downregulation of CD151 is an important positive regulator of cardiac function of heart failure, which can regulate exosome-stored proteins to play a role in the cellular interaction on the CMs and CFs. Modulating the exosome levels of ECs by reducing CD151 expression may offer novel therapeutic strategies and targets for HF treatment.


Assuntos
Exossomos , Insuficiência Cardíaca , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Células Endoteliais , Regulação para Baixo , Exossomos/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo
13.
Eur J Med Res ; 29(1): 109, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336819

RESUMO

INTRODUCTION: Salusins, which are translated from the alternatively spliced mRNA of torsin family 2 member A (TOR2A), play a vital role in regulation of various cardiovascular diseases. However, it remains unclear precisely regarding their roles in hypertrophic cardiomyopathy (HCM). Therefore, this study was conducted to explore therapeutic effect and the underlying mechanisms of salusins on HCM. MATERIAL AND METHODS: In vivo experiments, Sprague-Dawley rats were used to induce HCM model by angiotensin (Ang) II infusion for 4 weeks. The rats were randomly divided into four groups, namely, Saline + Control shRNA (n = 7), Ang II + Control shRNA (n = 8), Saline + TOR2A shRNA (n = 7), and Ang II + TOR2A shRNA groups (n = 8). After HCM induction, doppler echocardiography is recommended to evaluate heart function. In vitro experiments, primary neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (NRCFs) were obtained from newborn rats, and were treated with Ang II (10-6 M) for 24 h. RESULTS: After treatment with Ang II, levels of salusin-α and salusin-ß were elevated in serum and cardiac tissues of rats and in the neonatal rat cardiomyocytes and cardiac fibroblasts. Downregulation of salusins alleviated the Ang II-induced cardiac hypertrophy by suppressing the increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (ß-MHC) and cardiac fibrosis by blocking collagen I, collagen III and transforming growth factor-beta (TGF-ß), and it also attenuated oxidative stress by suppressing the increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels and reversing the decreased superoxide dismutase (SOD) activity and autophagy by inhibiting the increased microtubule-associated protein light chain 3B (LC3B), Beclin1, autophagy related gene (Atg) 3 and Atg5 in the cardiac tissues of Ang II-infused rats and in the Ang II-treated NRCMs. CONCLUSIONS: All these findings suggest that the levels of salusins were elevated in the HCM, and targeting of salusins contributes to alleviation of cardiac hypertrophy and fibrosis probably via attenuating oxidative stress and autophagy. Accordingly, targeting of salusins may be a strategy for HCM therapy.


Assuntos
Cardiomiopatia Hipertrófica , Ratos , Animais , Ratos Sprague-Dawley , Regulação para Baixo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miócitos Cardíacos , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Estresse Oxidativo , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Colágeno/genética
14.
Physiol Genomics ; 56(4): 360-366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314697

RESUMO

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although ß-adrenergic receptor (ß-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action. Recent evidence suggests it may alter gene expression via changes in miRNA expression. Thus, we hypothesized that minocycline could prevent adverse cardiac remodeling induced by the ß-AR agonist isoproterenol, involving miRNA-mRNA transcriptome alterations. Male C57BL/6J mice received isoproterenol (30 mg/kg/day sc) or vehicle via osmotic minipump for 21 days, along with daily minocycline (50 mg/kg ip) or sterile saline. Isoproterenol induced cardiac hypertrophy without altering cardiac function, which minocycline prevented. Total mRNA sequencing revealed isoproterenol altering gene networks associated with inflammation and metabolism, with fibrosis activation predicted by integrated miRNA-mRNA sequencing, involving miR-21, miR-30a, miR-34a, miR-92a, and miR-150, among others. Conversely, the cardiac miRNA-mRNA transcriptome predicted fibrosis inhibition in minocycline-treated mice, involving antifibrotic shifts in Atf3 and Itgb6 gene expression associated with miR-194 upregulation. Picrosirius red staining confirmed isoproterenol-induced cardiac fibrosis, prevented by minocycline. These results demonstrate minocycline's therapeutic potential in attenuating adverse cardiac remodeling through miRNA-mRNA-dependent mechanisms, especially in reducing cardiac fibrosis. NEW & NOTEWORTHY We demonstrate that minocycline treatment prevents cardiac hypertrophy and fibrotic remodeling induced by chronic ß-adrenergic stimulation by inducing antifibrotic shifts in the cardiac miRNA-mRNA transcriptome.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , MicroRNAs , Humanos , Masculino , Camundongos , Animais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Minociclina/farmacologia , Miócitos Cardíacos/metabolismo , Adrenérgicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Remodelação Ventricular/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Fibrose
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342418

RESUMO

BACKGROUND: Cardiac hypertrophy is a crucial pathological characteristic of hypertensive heart disease and subsequent heart failure. Deubiquitinating enzymes (DUBs) have been found to be involved in the regulation of myocardial hypertrophy. OTU Domain-Containing Protein 6a (OTUD6a) is a recently identified DUB. To date, the potential role of OTUD6a in myocardial hypertrophy has not yet been revealed. METHODS AND RESULTS: We examined the up-regulated level of OTUD6a in mouse or human hypertrophic heart tissues. Then, transverse aortic constriction (TAC)- or angiotensin II (Ang II)- induced ventricular hypertrophy and dysfunction were significantly attenuated in OTUD6a gene knockout mice (OTUD6a-/-). In mechanism, we identified that the Stimulator of Interferon Genes (STING) is a direct substrate protein of OTUD6a via immunoprecipitation assay and mass spectrometry. OTUD6a maintains STING stability via clearing the K48-linked ubiquitin in cardiomyocytes. Subsequently, OTUD6a regulates the STING-downstream NF-κB signaling activation and inflammatory gene expression both in vivo and in vitro. Inhibition of STING blocked OTUD6a overexpression-induced inflammatory and hypertrophic responses in cardiomyocytes. CONCLUSION: This finding extends our understanding of the detrimental role of OTUD6a in myocardial hypertrophy and identifies STING as a deubiquinating substrate of OTUD6a, indicating that targeting OTUD6a could be a potential strategy for the treatment of cardiac hypertrophy.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Animais , Humanos , Camundongos , Cardiomegalia/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 44(4): 826-842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328937

RESUMO

BACKGROUND: Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS: We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS: Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS: Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Isquemia Miocárdica , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Camundongos Knockout , Hipertensão/metabolismo
17.
Rejuvenation Res ; 27(2): 51-60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308474

RESUMO

Cardiac aging is defined as mitochondrial dysfunction of the heart. Vitamin D (VitD) is an effective agent in ameliorating cardiovascular disorders. In this study, we indicated the protective effects of VitD against cardiac aging. Male Wistar rats were randomly divided into four groups: control (CONT), D-galactose (D-GAL): aged rats induced by D-GAL, D-GAL + Ethanol: aged rats treated with ethanol, and D-GAL + VitD aged rats treated with VitD. Aging was induced by D-GAL at 150 mg/kg via intraperitoneal injection for 8 weeks. Aged rats were treated with VitD (D-GAL + VitD) by gavage for 8 weeks. The serum samples were used to evaluate biochemical factors, and heart tissues were assessed to determine oxidative stress and gene expression. The D-GAL rats exhibited cardiac hypertrophy, which was associated with decreased antioxidant enzyme activity, enhanced oxidative marker, and changes in the expression of mitochondrial genes in comparison with the control rats. Co-treatment with VitD ameliorated all these changes. In conclusion, VitD could protect the heart against D-GAL-induced aging via enhancing antioxidant effects, and the expression of mitochondrial genes.


Assuntos
Envelhecimento , Vitamina D , Ratos , Masculino , Animais , Vitamina D/farmacologia , Ratos Wistar , Envelhecimento/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Cardiomegalia/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Galactose/farmacologia
19.
Cell Death Dis ; 15(2): 135, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346961

RESUMO

Impaired fatty acid oxidation (FAO) is a prominent feature of metabolic remodeling observed in pathological myocardial hypertrophy. Hepatocyte nuclear factor 4alpha (HNF4α) is closely associated with FAO in both cellular processes and disease conditions. Pellino 1 (Peli1), an E3 ligase containing a RING-like domain, plays a crucial role in catalyzing polyubiquitination of various substrates. In this study, we aimed to investigate the involvement of HNF4α and its ubiquitination, facilitated by Peli1, in FAO during pressure overload-induced cardiac hypertrophy. Peli1 systemic knockout mice (Peli1KO) display improved myocardial hypertrophy and cardiac function following transverse aortic constriction (TAC). RNA-seq analysis revealed that changes in gene expression related to lipid metabolism caused by TAC were reversed in Peli1KO mice. Importantly, both HNF4α and its downstream genes involved in FAO showed a significant increase in Peli1KO mice. We further used the antagonist BI6015 to inhibit HNF4α and delivered rAAV9-HNF4α to elevate myocardial HNF4α level, and confirmed that HNF4α inhibits the development of cardiac hypertrophy after TAC and is essential for the enhancement of FAO mediated by Peli1 knockout. In vitro experiments using BODIPY incorporation and FAO stress assay demonstrated that HNF4α enhances FAO in cardiomyocytes stimulated with angiotension II (Ang II), while Peli1 suppresses the effect of HNF4α. Mechanistically, immunoprecipitation and mass spectrometry analyses confirmed that Peli1 binds to HNF4α via its RING-like domain and promotes HNF4α ubiquitination at residues K307 and K309. These findings shed light on the underlying mechanisms contributing to impaired FAO and offer valuable insights into a promising therapeutic strategy for addressing pathological cardiac hypertrophy.


Assuntos
Cardiomegalia , Miocárdio , Animais , Camundongos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Circ Res ; 134(7): 913-930, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38414132

RESUMO

BACKGROUND: Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress. METHODS: We performed in vitro studies on cardiomyocytes and myocardial tissue samples from patients and performed in vivo investigation with SLIT3 and ROBO1 (roundabout homolog 1) mutant mice undergoing transverse aortic constriction to establish the role of SLIT3-ROBO1 in adverse cardiac remodeling. RESULTS: We first found that SLIT3 transcription was increased in myocardial tissue obtained from patients with congenital heart defects that caused ventricular pressure overload. Immunostaining of hearts from WT (wild-type) and reporter mice revealed that SLIT3 is secreted by cardiac stromal cells, namely fibroblasts and vascular mural cells, within the heart. Conditioned media from cardiac fibroblasts and vascular mural cells both stimulated cardiomyocyte hypertrophy in vitro, an effect that was partially inhibited by an anti-SLIT3 antibody. Also, the N-terminal, but not the C-terminal, fragment of SLIT3 and the forced overexpression of SLIT3 stimulated cardiomyocyte hypertrophy and the transcription of hypertrophy-related genes. We next determined that ROBO1 was the most highly expressed roundabout receptor in cardiomyocytes and that ROBO1 mediated SLIT3's hypertrophic effects in vitro. In vivo, Tcf21+ fibroblast and Tbx18+ vascular mural cell-specific knockout of SLIT3 in mice resulted in decreased left ventricular hypertrophy and cardiac fibrosis after transverse aortic constriction. Furthermore, α-MHC+ cardiomyocyte-specific deletion of ROBO1 also preserved left ventricular function and abrogated hypertrophy, but not fibrosis, after transverse aortic constriction. CONCLUSIONS: Collectively, these results indicate a novel role for the SLIT3-ROBO1-signaling axis in regulating postnatal cardiomyocyte hypertrophy induced by pressure overload.


Assuntos
Miócitos Cardíacos , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...